## References

- Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
- Duesler, E. N. & Paul, I. C. (1983). X-ray Structures of the Polyether Antibiotics. In Polyether Antibiotics, Vol. 2, edited by J. W. Westley, pp. 87–195. New York: Marcel Dekker.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Schmidt, P. G., Wang, A. H.-J. & Paul, I. C. (1974). J. Am. Chem. Soc. 96, 6189–6191.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
- Smith, G. D., Duax, W. L. & Fortier, S. (1978). J. Am. Chem. Soc. 100, 6725–6727.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

# Comment

It is well established that vanadium has an important role in many biological processes (Rehder, 1991; Butler & Carrano, 1991). In the +5 oxidation state it has been postulated that the vanadate ion acts as a potent inhibitor of Na<sup>+</sup>, K<sup>+</sup> ATPase (Butler & Carrano, 1991). In order to gain more structural information about these complex systems, we synthesized and determined the crystal structure of a new binuclear vanadate complex with N and O donor ligands, (1). This is a continuation of our programme of research into the preparation and characterization of vanadium complexes with bioinorganic relevance (Neves, Ceccato, Erthal, Vencato, Nuber & Weiss, 1991; Neves, Ceccato, Vencato, Mascarenhas & Erasmus-Buhr, 1992; Neves, Ceccato, Erasmus-Buhr, Gehring, Haase, Paulus, Nascimento & Batista, 1993).



Acta Cryst. (1995). C51, 809-811

# $\mu$ -[N,N-Bis(2-pyridylmethyl-1 $\kappa$ N)-N',N'-bis(2-pyridylmethyl-2 $\kappa$ N)-1,3diaminopropan-2-olato]-1 $\kappa$ N,2 $\kappa$ N',1:2 $\kappa$ <sup>2</sup>Obis(dioxovanadium)(1+) Iodide Dihydrate, [(VO<sub>2</sub>)<sub>2</sub>(TPHPN)]I.2H<sub>2</sub>O

ADEMIR NEVES

Departamento de Química - UFSC, 88040-900 - Florianópolis, SC, Brazil

IVO VENCATO

Departamento de Física - UFSC, 88040-900 - Florianópolis, SC, Brazil

MANFREDO HÖRNER AND HERTON FENNER

Departamento de Química - UFSM, 97111-900 - Santa Maria, RS, Brazil

(Received 22 June 1994; accepted 3 August 1994)

## Abstract

In the binuclear  $[(VO_2)_2(TPHPN)]^+$  cation of the title compound,  $[V_2O_4(C_{27}H_{29}N_6O)]I.2H_2O$ , the two tridentate halves of the symmetrical TPHPN<sup>-</sup> ligand are arranged so that the three donor N atoms are *fac* at one pseudo-octahedral metal centre but *mer* at the other. The strong *trans* influence of the oxo ligand is apparent from trends in the  $\mu$ -V—O and V—N bond lengths.

The title compound is built from discrete binuclear [(VO<sub>2</sub>)<sub>2</sub>(TPHPN)]<sup>+</sup> cations, uncoordinated I<sup>-</sup> anions and water molecules of crystallization. The V atoms in the cation of (1) are in pseudo-octahedral environments, bridged by the  $\mu$ -alkoxo O atom, with the VO<sub>2</sub> moieties in the expected cis configuration. The N donor atoms (from the two amine groups and the four pyridyl groups) of the symmetrical TPHPN<sup>-</sup> ligand complete the octahedral coordination spheres of the two vanadium(V) centers. The [(VO<sub>2</sub>)<sub>2</sub>(TPHPN)]<sup>+</sup> cation contains a  $(O_2 V^V - O_R - V^V O_2)^+$  core, which, to the best of our knowledge, has not been crystallographically characterized previously, although a linear  $(O_2V - O - VO_2)$  unit in the complex  $[L_2V_2O_4(\mu - O)]$ (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) has been reported recently (Knopp, Wieghardt, Nuber, Weiss & Sheldrick, 1990). Pertinent bridging features include the  $V^{V} \cdots V^{V}$  distance of 3.690 (3) Å and the V(1)-O(5)-V(2) angle of 126.2 (1)°. Moreover, it is worth noting that the two tridentate halves (each with one amine and two pyridyl N donor atoms) of the symmetrical bridging ligand adopt distinct configurations around the vanadium centres: V(1) is coordinated in a meridional fashion whereas about V(2) the arrangement is facial.

The terminal V—O distances are short [average 1.620 (3) Å], indicating considerable multiple-bond character, and agree well with V=O distances in dimeric (Knopp *et al.*, 1990) and monomeric octahedral complexes containing *cis*-dioxovanadium units (Neves, Walz, Wieghardt, Nuber & Weiss, 1988; Neves, Hörner,



Fig. 1. A perspective view of the cation with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level for non-H atoms; H atoms have been omitted for clarity.

Fenner & Strähle, 1993). The vanadium- $\mu$ -alkoxo bond lengths differ significantly: the V(1)--O(5) distance is 0.264 (2) Å longer than the V(2)-O(5) distance, indicating that the *trans* influence of the terminal oxo group is much greater than that of the pyridyl group. The strong *trans* influence of the oxo group is also apparent from the V--N distances: the average V---N(*trans* to oxo) distance of 2.290 (3) Å is ~0.175 Å longer than the mean length of the V--N bonds *trans* to N(pyridyl) or O(alkoxo) donor atoms.

The structure also features two hydrogen bonds involving the two water molecules of crystallization O(W1) and O(W2) [ $O(W1) \cdots O(4^i) = 2.992$  (9) and  $O(W2) \cdots O(1^{ii}) = 2.772$  (14) Å; symmetry codes: (i) x,  $-\frac{1}{2}+y, -\frac{1}{2}+z$ ; (ii)  $-x+1, \frac{1}{2}+y, \frac{1}{2}-z$ ].

# **Experimental**

The title complex (1) was obtained by the reaction of VCl<sub>3</sub> and HTPHPN (2:1) (Chan & Armstrong, 1989) in a mixture of acetonitrile and tetrahydrofuran under reflux, whereby V<sup>III</sup> is oxidized to V<sup>V</sup> by air. Single crystals suitable for X-ray crystallography were obtained by recrystallization from a methanol solution.

## Crystal data

| [V <sub>2</sub> O <sub>4</sub> (C <sub>27</sub> H <sub>29</sub> N <sub>6</sub> O)]I.2H <sub>2</sub> O | Mo $K\alpha$ radiation         |
|-------------------------------------------------------------------------------------------------------|--------------------------------|
| $M_r = 782.38$                                                                                        | $\lambda = 0.71073 \text{ Å}$  |
| Monoclinic                                                                                            | Cell parameters from 25        |
| $P2_1/c$                                                                                              | reflections                    |
| a = 15.369 (4)  Å                                                                                     | $\theta = 12.0 - 18.0^{\circ}$ |
| b = 14.399 (7) Å                                                                                      | $\mu = 1.65 \text{ mm}^{-1}$   |
| c = 13.772 (3) Å                                                                                      | T = 293  K                     |
| $\beta = 90.88 (7)^{\circ}$                                                                           | Trapezoidal plate              |
|                                                                                                       |                                |

$$V = 3047$$
 (3) Å<sup>3</sup>  
 $Z = 4$   
 $D_x = 1.705$  Mg m<sup>-3</sup>

#### Data collection

Enraf-Nonius CAD-4 diffractometer  $\omega/2\theta$  scans Absorption correction: refined from  $\Delta F$ (*DIFABS*; Walker & Stuart, 1983)  $T_{min} = 0.62, T_{max} = 0.78$ 5222 measured reflections

4380 independent reflections

#### Refinement

Refinement on F R = 0.0424 wR = 0.0516 S = 2.704177 reflections 389 parameters H-atom parameters not refined  $w = 1/\sigma^2(F)$  $(\Delta/\sigma)_{max} = 0.01$   $0.30 \times 0.20 \times 0.15 \text{ mm}$ Clear yellow

- 4177 observed reflections  $[I > 3.0\sigma(I)]$   $R_{int} = 0.028$   $\theta_{max} = 24.0^{\circ}$   $h = 0 \rightarrow 15$   $k = 0 \rightarrow 16$   $l = -17 \rightarrow 17$ 2 standard reflections frequency: 40 min intensity variation: 0.6%
- $\Delta \rho_{\text{max}} = 0.74 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.72 \text{ e } \text{\AA}^{-3}$ Extinction correction: Zachariasen (1963) Extinction coefficient: 4.657 (3) × 10<sup>-8</sup> Atomic scattering factors from *International Tables* for X-ray Crystallography (1974, Vol. IV, Table 2.2A)

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

$$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

|       | x           | у            | Z           | Beq      |
|-------|-------------|--------------|-------------|----------|
| Ι     | 0.30242 (3) | 0.38482 (4)  | 0.05607 (4) | 4.26 (1) |
| V(1)  | 0.38539 (7) | -0.17838 (8) | 0.20864 (8) | 3.09 (2) |
| V(2)  | 0.15124 (7) | -0.23569 (7) | 0.21657 (8) | 3.04 (2) |
| O(1)  | 0.4903 (3)  | -0.1761 (3)  | 0.1973 (3)  | 4.2 (1)  |
| O(2)  | 0.3462 (3)  | -0.2041 (3)  | 0.1027 (3)  | 4.2(1)   |
| O(3)  | 0.1438 (3)  | -0.3117 (3)  | 0.3038 (3)  | 4.2 (1)  |
| O(4)  | 0.1787 (3)  | -0.2936 (3)  | 0.1216 (3)  | 3.8 (1)  |
| O(5)  | 0.2514 (3)  | -0.1647 (3)  | 0.2613 (3)  | 3.01 (8) |
| O(W1) | 0.1333 (5)  | -1.0111 (5)  | 0.6749 (9)  | 13.9 (3) |
| O(W2) | 0.3625 (9)  | 0.3147 (8)   | 0.4161 (9)  | 16.5 (4) |
| N(1)  | 0.3992 (3)  | -0.1398 (3)  | 0.3684 (4)  | 2.8 (1)  |
| N(2)  | 0.0874 (3)  | -0.1247 (4)  | 0.3102 (4)  | 3.2 (1)  |
| N(11) | 0.3864 (3)  | -0.3063 (4)  | 0.2822 (4)  | 3.2 (1)  |
| N(21) | 0.3755 (3)  | -0.0325 (4)  | 0.2088 (4)  | 3.3 (1)  |
| N(31) | 0.0147 (3)  | -0.2484 (4)  | 0.1885 (4)  | 3.4 (1)  |
| N(41) | 0.1280 (3)  | -0.1064 (4)  | 0.1200 (4)  | 3.4 (1)  |
| C(1)  | 0.4534 (4)  | -0.2149 (5)  | 0.4098 (5)  | 3.4 (1)  |
| C(2)  | 0.4430 (4)  | -0.0480 (5)  | 0.3684 (5)  | 3.6(1)   |
| C(3)  | 0.3131 (4)  | -0.1366 (4)  | 0.4181 (4)  | 3.2 (1)  |
| C(4)  | 0.2423 (4)  | -0.1086 (5)  | 0.3460 (4)  | 3.3 (1)  |
| C(5)  | 0.1536 (4)  | -0.1203 (5)  | 0.3899 (4)  | 3.4 (1)  |
| C(6)  | 0.0716 (5)  | -0.0331 (5)  | 0.2637 (5)  | 4.1 (2)  |
| C(7)  | 0.0046 (4)  | -0.1683 (5)  | 0.3408 (5)  | 3.9 (1)  |
| C(11) | 0.4229 (4)  | -0.3060 (4)  | 0.3716 (5)  | 3.1 (1)  |
| C(12) | 0.4344 (4)  | -0.3881 (5)  | 0.4246 (5)  | 4.0 (1)  |
| C(13) | 0.4073 (5)  | -0.4708 (5)  | 0.3823 (6)  | 4.6 (2)  |
| C(14) | 0.3681 (5)  | -0.4692 (5)  | 0.2915 (5)  | 4.5 (2)  |
| C(15) | 0.3586 (4)  | -0.3862 (5)  | 0.2435 (5)  | 3.6(1)   |
| C(21) | 0.4071 (4)  | 0.0120 (5)   | 0.2883 (5)  | 3.4 (1)  |
| C(22) | 0.4046 (4)  | 0.1085 (5)   | 0.2939 (5)  | 3.9 (1)  |
| C(23) | 0.3689 (5)  | 0.1585 (5)   | 0.2193 (6)  | 4.4 (2)  |
| C(24) | 0.3354 (5)  | 0.1129 (5)   | 0.1397 (5)  | 4.6 (2)  |
| C(25) | 0.3401 (4)  | 0.0173 (5)   | 0.1366 (5)  | 3.9 (1)  |
| C(31) | -0.0390 (4) | -0.2114 (5)  | 0.2534 (5)  | 3.6(1)   |
| C(32) | -0.1283 (5) | -0.2168 (6)  | 0.2416 (6)  | 4.7 (2)  |

| C(33) | -0.1616 (5) | -0.2633 (7) | 0.1615 (6)  | 5.6 (2) |
|-------|-------------|-------------|-------------|---------|
| C(34) | -0.1058 (5) | -0.3033 (6) | 0.0953 (6)  | 4.9 (2) |
| C(35) | -0.0186 (4) | -0.2937 (5) | 0.1122 (5)  | 3.9(1)  |
| C(41) | 0.0975 (4)  | -0.0288 (5) | 0.1598 (5)  | 3.7 (1) |
| C(42) | 0.0886 (7)  | 0.0516 (6)  | 0.1059 (6)  | 6.1 (2) |
| C(43) | 0.1083 (8)  | 0.0524 (6)  | 0.0119 (7)  | 7.5 (3) |
| C(44) | 0.1430 (7)  | -0.0263 (6) | -0.0316 (6) | 6.1 (2) |
| C(45) | 0.1511 (5)  | -0.1043(5)  | 0.0252 (5)  | 4.4 (2) |

## Table 2. Selected geometric parameters (Å, °)

| V(1)-O(1)            | 1.624 (3) | V(2)—O(4)                     | 1.612 (3) |
|----------------------|-----------|-------------------------------|-----------|
| V(1)-O(2)            | 1.614 (3) | V(2)—O(5)                     | 1.940 (2) |
| V(1)-O(5)            | 2.204 (2) | V(2)—N(2)                     | 2.284 (3) |
| V(1) - N(1)          | 2.275 (4) | V(2)—N(31)                    | 2.136 (3) |
| V(1)—N(11)           | 2.103 (3) | V(2)—N(41)                    | 2.313 (3) |
| V(1)—N(21)           | 2.106 (3) | $V(1) \cdot \cdot \cdot V(2)$ | 3.690 (3) |
| V(2)—O(3)            | 1.631 (3) |                               |           |
| O(1) - V(1) - O(2)   | 106.0(1)  | O(3)—V(2)—O(4)                | 105.8 (1) |
| O(1) - V(1) - O(5)   | 164.9 (1) | O(3)—V(2)—O(5)                | 100.7 (1) |
| O(1) - V(1) - N(1)   | 90.6 (1)  | O(3)—V(2)—N(2)                | 91.1 (1)  |
| O(1) - V(1) - N(11)  | 93.7 (1)  | O(3)—V(2)—N(31)               | 89.8 (1)  |
| O(1)—V(1)—N(21)      | 93.1 (1)  | O(3)—V(2)—N(41)               | 162.2 (1) |
| O(2)—V(1)—O(5)       | 88.9 (1)  | O(4)—V(2)—O(5)                | 108.3 (1) |
| O(2) - V(1) - N(1)   | 163.4 (1) | O(4)—V(2)—N(2)                | 160.1 (1) |
| O(2) - V(1) - N(11)  | 103.6(1)  | O(4)—V(2)—N(31)               | 94.5 (1)  |
| O(2)—V(1)—N(21)      | 101.7 (1) | O(4)—V(2)—N(41)               | 89.4 (1)  |
| O(5) - V(1) - N(1)   | 74.6(1)   | O(5)—V(2)—N(2)                | 78.3 (2)  |
| O(5) - V(1) - N(11)  | 85.4 (2)  | O(5)-V(2)-N(31)               | 151.1 (1) |
| O(5)—V(1)—N(21)      | 80.9 (1)  | O(5)—V(2)—N(41)               | 82.7 (1)  |
| N(1) - V(1) - N(11)  | 75.4 (1)  | N(2) - V(2) - N(31)           | 74.5 (1)  |
| N(1) - V(1) - N(21)  | 76.2 (1)  | N(2)—V(2)—N(41)               | 72.4 (1)  |
| N(11) - V(1) - N(21) | 150.9 (1) | V(1)—O(5)—V(2)                | 126.2 (1) |

H atoms were included at geometrically idealized positions; their coordinates were recalculated after each cycle. The H atoms of the two water molecules were not located.

Data collection, cell refinement and data reduction: *SDP* (Frenz, 1978). Program used to solve structure: *SHELXS86* (VMS version; Sheldrick, 1985). Program used to refine structure: *SDP*. Molecular graphics: *ORTEP* (Johnson, 1965). Software used to prepare material for publication: *SDP*. The calculations were performed on a VAX computer at the Universität Tübingen.

This work was supported by grants from PADCT, CNPq, FINEP, CAPES, FUNCITEC (Brazil) and VW-Stiftung (Germany).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: MU1137). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

### References

Butler, A. & Carrano, C. J. (1991). Coord. Chem. Rev. 109, 148–167. Chan, M. K. & Armstrong, W. H. (1989). J. Am. Chem. Soc. 111, 9121–9122.

- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft Univ. Press.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Knopp, P., Wieghardt, K., Nuber, B., Weiss, J. & Sheldrick, W. S. (1990). Inorg. Chem. 29, 363–371.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Neves, A., Ceccato, A. S., Erasmus-Buhr, C., Gehring, S., Haase, W., Paulus, H., Nascimento, O. R. & Batista, A. A. (1993). J. Chem. Soc. Chem. Commun. 23, 1782–1784.
- Neves, A., Ceccato, A. S., Erthal, S. M. D., Vencato, I., Nuber, B. & Weiss, J. (1991). *Inorg. Chem. Acta*, 187, 119–121.
- Neves, A., Ceccato, A. S., Vencato, I., Mascarenhas, Y. P. & Erasmus-Buhr, C. (1992). J. Chem. Soc. Chem. Commun. 8, 652–654.
- Neves, A., Hörner, M., Fenner, H. & Strähle, J. (1993). Acta Cryst. C49, 1737-1739.
- Neves, A., Walz, W., Wieghardt, K., Nuber, B. & Weiss, J. (1988). Inorg. Chem. 27, 2484-2489.
- Rehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148-167.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1995). C51, 811-813

# Pentacarbonyl- $1\kappa C, 2\kappa^4 C$ -bis $[1,1(\eta^5)$ cyclopentadienyl](dimethylphenylphosphine- $2\kappa P$ )- $\mu$ -dimethylphosphanidoniobiumtungsten

PASCAL OUDET, MAREK M. KUBICKI\* AND CLAUDE MOÏSE

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel 21000 Dijon, France

(Received 6 January 1994; accepted 24 June 1994)

#### Abstract

The title complex,  $[NbW(C_2H_6P)(C_5H_5)_2(CO)_5-(C_8H_{11}P)]$ , belongs to a small family of monophosphido-bridged transition metal complexes without both a metal-metal bond and any other bridges. The observed geometries of the Nb (distorted tetrahedral) and W (*cis*-octahedral) centers are as expected with a significantly enlarged Nb—P(1)—W angle of 124.9 (2)°. The methyl groups of the bridging phosphido ligand adopt an *endo* orientation towards the CO (Nb—CO) ligand which compels them to adopt symmetrical positions with respect to the (OC)NbP plane, bisecting that of the cyclopentadienyl rings. Consequently, the C(Nb—CO), Nb, P and W atoms are coplanar.

## Comment

During our studies on the reactivity of phosphidobridged heterobimetallic compounds derived from bis( $\eta^5$ -cyclopentadienyl)niobium and Group 6 metal (M') carbonyls of the type [(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Nb( $\mu$ -PR<sub>2</sub>CO)M'-